ارزیابی و بهبود عملکرد روش های مبتنی بر نمایش تنک در مسائل پیچیده طبقه بندی داده ها

thesis
abstract

طی دهه اخیر، پردازش تنک سیگنال ها به عنوان ابزاری قدرتمند و جایگزینی کارا برای تبدیل های کلاسیک، توجه زیادی را به خود جلب کرده است. استفاده از نمایش تنک سیگنال ها در مسائل طبقه بندی نیز نتایج موفقیت آمیزی به همراه داشته است. با این حال، کیفیت عملکرد این طبقه بندی کننده ها در شرایط سخت، از جمله در مواردی که داده های هر طبقه تنوع زیادی داشته و یا ابعاد داده ها در مقایسه با تعداد داده های آموزشی زیاد باشد، به شدت افت می کند. علاوه بر این، پیچیدگی محاسباتی بالای برخی از این روش ها، استفاده از آن ها را در بسیاری از کاربردهای عملی با مشکل مواجه می کند. برای کاهش این مشکلات، روش های مختلفی ارائه شده است که از آن جمله می توان به توسعه الگوریتم های آموزش دیکشنری طبقه بندی گرا و همچنین معرفی روش هایی برای انتخاب تعداد کمی از اتم های دیکشنری که نمایش متمایزکننده تری از سیگنال مورد نظر ارائه می دهند، اشاره کرد. در این پژوهش، مسائل پیچیده طبقه بندی دادگان با استفاده از طبقه بندی کننده های مبتنی بر نمایش تنک، با به کارگیری روش های آموزش دیکشنری و همچنین ارائه ی روش جدیدی تحت عنوان طبقه بندی دو مرحله ای مورد توجه قرار گرفته است. برای ارزیابی عملکرد روش ها، از دو پایگاه داده 14-tumors و lfw استفاده شده است. دادگان 14-tumors حاوی مقادیر بیان ژن در 14 نوع تومور مختلف می باشد که ابعاد بسیار بالایی در مقایسه با تعداد نمونه ها دارد. شرایط کنترل نشده تصاویر چهره lfw نیز منجر به عملکرد ضعیف روش های معمول، در تفکیک زوج های سازگار و ناسازگار آن شده است. مقایسه ی نتایج شبیه سازی ها، حاکی از عملکرد بهتر روش طبقه بندی دو مرحله ای پیشنهادی در دادگان 14-tumors، با صحت تقریبی 80 درصد است. همچنین، استفاده از دیکشنری های مجزا برای هر یک از تصاویر زوج ورودی، به دسته بندی نسبتا بهتر زوج های سازگار و ناسازگار در پایگاه داده lfw منجر شده است.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

بهبود کارایی طبقه بندی کننده مبتنی بر نمایش تنک برای طبقه بندی سیگنالهای مغزی

در این مقاله مسئله طبقه بندی سیگنالهای eeg مبتنی بر تصور حرکتی برای یک سیستم واسط مغز-کامپیوتر (bci)، توسط طبقه بندی کننده مبتنی بر نمایش تنک (src) مورد توجه واقع شده است. این طبقه بندی کننده برای کارایی بالا نیاز به طراحی ماتریس دیکشنری قوی دارد. با توجه به کارایی بالای الگوریتم الگوهای مکانی مشترک (csp) در سیستمهای bci، از این روش برای طراحی ماتریس دیکشنری استفاده شده است. از معایب cspحساس به...

full text

بهبود عملکرد طبقه بندی کننده مبتنی بر نمایش تنک در سیستم های bci با بهسازی فرایند استخراج ویژگی و استفاده از الگوریتم بهینه یافتن پاسخ تنک

در سال های اخیر، واسط مغز – رایانه (bci)، به عنوان وسیله ای جدید برای ارتباط بین مغز انسان و محیط اطرافش مورد توجه قرار گرفته است. به منظور راه اندازی چنین سیستمی، همکاری چند بلوک از جمله بلوک های ثبت، پردازش سیگنال و رابط کاربری مورد نیاز است. بلوک پردازش سیگنال شامل بلوک های پیش پردازش و شناسایی الگو است و بلوک شناسایی الگو شامل دو مرحله استخراج ویژگی و طبقه بندی می باشد. در این مقاله از طبقه...

full text

طبقه بندی کننده دومرحله ای مبتنی بر نمایش تنک و کاربرد آن در تشخیص سرطان

ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﺘﺎﻳﺞ ﻣﻮﻓﻘﻴﺖﺁﻣﻴﺰ ﻃﺒﻘﻪﺑﻨﺪیﻛﻨﻨﺪﻩ ﻣﺒﺘﻨﻰ ﺑﺮ ﻧﻤﺎﻳﺶ ﺗﻨﮏ (src) ﻭ ﺧﻮﺷﻪﺑﻨﺪی ﺯﻳﺮﻓﻀﺎی ﺗﻨﮏ (ssc) ﺩﺭ ﻛﺎﺭﺑﺮﺩﻫﺎی ﻣﺨﺘﻠﻒ، ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﺎ ﺗﺮﻛﻴﺐ ﺍﻳﻦ ﺩﻭ ﺭﻭﺵ، ﻳﮏ ﺭﻭﺵ ﻃﺒﻘﻪﺑﻨﺪی ﺳﻠﺴﻠﻪ ﻣﺮﺍﺗﺒﻰ ﺍﺭﺍﺋﻪ ﻣﻰﺷﻮﺩ. ﺍﻳﺪﻩ ﺍﺻﻠﻰ ﺩﺭ ﺭﻭﺵﻫﺎی ﻃﺒﻘﻪﺑﻨﺪی ﻭ ﺧﻮﺷﻪﺑﻨﺪی ﻣﺒﺘﻨﻰ ﺑﺮ ﻧﻤﺎﻳﺶ ﺗﻨﮏ، ﻧﻤﺎﻳﺶ ﻫﺮ ﺩﺍﺩﻩ ﺑﻪ ﺻﻮﺭﺕ ﺗﺮﻛﻴﺐ ﺧﻄﻰ ﺗﻨﮏ ﺍﺯ ﺳﺎﻳﺮ ﺩﺍﺩﻩﻫﺎ ﺍﺳﺖ ﺑﻪ ﮔﻮﻧﻪﺍی ﻛﻪ ﺩﺍﺩﻩﻫﺎی ﻣﺸﺎﺑﻪ ﺑﺎ ﺩﺍﺩﻩ ﻣﻮﺭﺩ ﻧﻈﺮ ﺩﺭ ﺍﻳﻦ ﺗﺮﻛﻴﺐ ﺧﻄﻰ ﺑﻴﺸﺘﺮﻳﻦ ﻭﺯﻥ ﺭﺍ ﺑﻪ ﺧﻮﺩ ﺍﺧﺘﺼﺎﺹ ...

full text

آشکارسازی حرکت پا در سیستم واسط مغز-رایانه کاربرفرما با استفاده از روش طبقه بندی مبتنی بر نمایش تنک سیگنال

سیستم های bciکاربرفرما در مقایسه با سیستمهای bciسنکرون، ارتباط طبیعی­تر کاربر را با فضای خارج امکان­پذیر می کنند. آشکارسازی بازه های وقوع حرکت در سیگنال پیوسته eegمسأله ای کلیدی در طراحی سیستم­های bci  کاربرفرما مبتنی بر حرکت است. در این مقاله با استفاده از ویژگی بعد فرکتالی در باندفرکانسی 6 تا 36 هرتز و طراحی طبقه بند مبتنی بر نمایش تنک سیگنال، پدیده نورولوژیک همزمانی وابسته به رخداد (ers)- که...

full text

طبقه بندی راه های شهری مبتنی بر ادغام در سطح تصمیمات داده های نوری و راداری

در این مقاله قابلیت تصاویر اسپات و سار به منظور تشخیص عارضه راه در مناطق شهری مورد بررسی قرار گرفته است. شباهت طیفی عارضه راه با سقف آسفالت ساختمان ها در مناطق شهری موجب بروز مشکلاتی در تشخیص راه مبتنی بر داده های اپتیک از جمله اسپات می گردد. از سوی دیگر، تصاویر سار با اینکه قابلیت خوبی در تشخیص راههای فرعی و باریک دارند، اما در تشخیص راه از پوشش گیاهی دچار مشکلاتی می شود. بنابراین، نتایج حاصل ...

full text

بهبود کارایی طبقه‌بندی‌کننده مبتنی بر نمایش تنک برای طبقه‌بندی سیگنالهای مغزی

In this paper, the problem of classification of motor imagery EEG signals using a sparse representation-based classifier is considered. Designing a powerful dictionary matrix, i.e. extracting proper features, is an important issue in such a classifier. Due to its high performance, the Common Spatial Patterns (CSP) algorithm is widely used for this purpose in the BCI systems. The main disadvanta...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده مهندسی برق و کامپیوتر

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023